论文标题

下一代当地时间踏入ADER-DG有限元方法

Next-Generation Local Time Stepping for the ADER-DG Finite Element Method

论文作者

Breuer, Alexander, Heinecke, Alexander

论文摘要

高频地面运动模拟在计算地震学方面构成了巨大的挑战。两个主要因素推动了这一挑战。首先,为了说明较高的频率,我们必须通过考虑无弹性或包括山地形态来扩展数值模型。其次,即使我们能够保持模型不变,只需将地震波传播求解器的频率含量加倍,也需要由于使用过的四维时空域而增加了16倍的计算资源。 这项工作在高频地面运动模拟的背景下提出了极端的不连续的盖尔金环境(Edge)。我们提出的增强功能涵盖了非结构化有限元求解器的整个光谱。这包括纳入无弹性,引入下一代的当地时间步进方案以及引入完全修订的通信方案。我们通过展示新的且丰富的预处理来关闭建模和仿真循环,从而推动了核心求解器的高问题意识和数值效率。 总而言之,提出的工作使我们能够进行大规模的高频地面运动模拟,并定期和方便。我们作品的健全性是通过使用现实设置运行的一组高频验证强调的。我们通过研究Edge在2014 MW 5.1 La Habra地震的苛刻设置中研究Edge的算法和计算效率的结合结合结束。我们的结果令人信服,并显示了超过10倍的时间的提高,同时将Frontera SuperCupter的256个节点缩放到1,536个节点,平行效率超过95%。

High-frequency ground motion simulations pose a grand challenge in computational seismology. Two main factors drive this challenge. First, to account for higher frequencies, we have to extend our numerical models, e.g., by considering anelasticity, or by including mountain topography. Second, even if we were able to keep our models unchanged, simply doubling the frequency content of a seismic wave propagation solver requires a sixteen-fold increase in computational resources due to the used four-dimensional space-time domains. This work presents the Extreme Scale Discontinuous Galerkin Environment (EDGE) in the context of high-frequency ground motion simulations. Our presented enhancements cover the entire spectrum of the unstructured finite element solver. This includes the incorporation of anelasticity, the introduction of a next-generation clustered local time stepping scheme, and the introduction of a completely revised communication scheme. We close the modeling and simulation loop by presenting our new and rich preprocessing, which drives the high problem-awareness and numerical efficiency of the core solver. In summary, the presented work allows us to conduct large scale high-frequency ground motion simulations efficiently, routinely and conveniently. The soundness of our work is underlined by a set of high-frequency verification runs using a realistic setting. We conclude the presentation by studying EDGE's combined algorithmic and computational efficiency in a demanding setup of the 2014 Mw 5.1 La Habra earthquake. Our results are compelling and show an improved time-to-solution by over 10x while scaling strongly from 256 to 1,536 nodes of the Frontera supercomputer with a parallel efficiency of over 95%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源