论文标题

大属双曲线表面上随机多晶的长度分区

Length partition of random multicurves on large genus hyperbolic surfaces

论文作者

Vincent, Delecroix, Mingkun, Liu

论文摘要

我们研究了在$ g \ geq 2 $属表面上随机多晶的成分的长度统计。对于每个固定属,此类统计数据的存在遵循M.〜irzakhani,F。〜Arana-Herrera和M.〜liu的工作。我们证明,随着属$ g $的属倾向于无限统计,统计数据将法律汇合到Poisson- dirichlet分布$θ= 1/2 $。特别是,由于该属倾向于无穷大,三个最长组件的平均长度分别收敛到$ 75.8 \%$,$ 17.1 \%\%$和$ 4.9 \%\%\%\%\%$。

We study the length statistics of the components of a random multicurve on a surface of genus $g \geq 2$. For each fixed genus, the existence of such statistics follows from the work of M.~Mirzakhani, F.~Arana-Herrera and M.~Liu. We prove that as the genus $g$ tends to infinity the statistics converge in law to the Poisson--Dirichlet distribution of parameter $θ=1/2$. In particular, as the genus tends to infinity the mean length of the three longest components converge respectively to $75.8\%$, $17.1\%$ and $4.9\%$ of the total length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源