论文标题

预期的随机复杂子延伸物的局部拓扑

Expected local topology of random complex submanifolds

论文作者

Gayet, Damien

论文摘要

令$ n \ geq 2 $和$ r \ in \ {1,\ cdots,n-1 \} $为整数,$ m $是一种紧凑的光滑k \''ah'ah ah ah ah ah ah ahler ahler ahler ahler complieve $ n $,$ e $ $ $ e $ as a holomorphic vector vector bundle a plange conppplecept $ r $ r $ r $ r $ r $ u $ r $,是$ bunmitian $ $ $ $ h_ $ h_e e n y l h_e e n y l。 $ m $配备了带正弯曲形式的度量$ h $。对于任何足够大的$ d \ in \ mathbb {n} $,我们认可与$ h_e $,$ h $相关的天然高斯措施$ h^0(m,m,e \ otimes l^d)$。令$ u \子集M $为具有光滑边界的开放子集。我们证明,$(n-r)$ - th betti的平均数量在随机的$ u $ $ u $ $ h^0(m,e \ otimes l^d)$的$ u $中是渐近的,均为$ {n-1 \ select r-1} d^n \ int_u c_1(l)$ d $。另一方面,其他贝蒂号的平均值为$ O(d^n)$。第一个渐近恢复经典的确定性全局代数计算。此外,在这些平均值的增长顺序上,这种差异是新的,并且与所有其他已知的平滑高斯模型,尤其是真正的代数差异。我们证明了Aggine Complex Bargmann-Fock模型的类似结果。

Let $n\geq 2$ and $r\in \{1, \cdots, n-1\}$ be integers, $M$ be a compact smooth K\''ahler manifold of complex dimension $n$, $E$ be a holomorphic vector bundle with complex rank $r$ and equipped with an hermitian metric $h_E$, and $L$ be an ample holomorphic line bundle over $M$ equipped with a metric $h$ with positive curvature form. For any $d\in \mathbb{N}$ large enough, we endorse the space of holomorphic sections $H^0(M,E\otimes L^d)$ with the natural Gaussian measure associated to $h_E$ , $h$ and its curvature form. Let $U\subset M$ be an open subset with smooth boundary. We prove that the average of the $(n-r)$-th Betti number of the vanishing locus in $U$ of a random section $s$ of $H^0(M,E\otimes L^d)$ is asymptotic to ${n-1 \choose r-1} d^n\int_U c_1(L)^n$ for large $d$. On the other hand, the average of the other Betti numbers are $o(d^n)$. The first asymptotic recovers the classical deterministic global algebraic computation. Moreover, such a discrepancy in the order of growth of these averages is new and constrasts with all known other smooth Gaussian models, in particular the real algebraic one. We prove a similar result for the affine complex Bargmann-Fock model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源