论文标题

具有随意符号的反应系数的时间分数抛物线方程的最大原理

Maximum principle for time-fractional parabolic equations with a reaction coefficient of arbitrary sign

论文作者

Kopteva, Natalia

论文摘要

我们考虑使用(0,1)$的订单$α\的CAPUTO时间导数的时间折叠式抛物线方程。对于此类方程,我们在没有关于反应系数符号的假设下给出了弱最大原理的基本证明。该证明也用于弱解决方案,以及各种类型的边界条件和可变的可变级多标准时间折异构方程。

We consider time-fractional parabolic equations with a Caputo time derivative of order $α\in(0,1)$. For such equations, we give an elementary proof of the weak maximum principle under no assumptions on the sign of the reaction coefficient. This proof is also extended for weak solutions, as well as for various types of boundary conditions and variable-coefficient variable-order multiterm time-fractional parabolic equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源