论文标题

通过Hankel结构矩阵完成的两击DOA估算

Two-snapshot DOA Estimation via Hankel-structured Matrix Completion

论文作者

Bokaei, Mohammad, Razavikia, Saeed, Amini, Arash, Rini, Stefano

论文摘要

在本文中,我们研究了使用稀疏采样的均匀线性阵列(ULA)估算到达方向(DOA)的问题。基于初始不完整的ULA测量,我们的策略是选择一个稀疏的阵列元素子集来测量下一个快照。然后,我们使用Hankel结构的矩阵完成来插值缺失的ULA测量值。最后,使用诸如完全恢复的ULA上的Prony之类的子空间方法估算源DOA。从理论上讲,我们为所需的样品数量(数组元素)提供了足够的绑定,以实现完美的恢复。该方法的数值比较与现有技术(例如原子 - - - 摩尔最小化和网格方法)的现有技术证实了所提出方法的优越性。

In this paper, we study the problem of estimating the direction of arrival (DOA) using a sparsely sampled uniform linear array (ULA). Based on an initial incomplete ULA measurement, our strategy is to choose a sparse subset of array elements for measuring the next snapshot. Then, we use a Hankel-structured matrix completion to interpolate for the missing ULA measurements. Finally, the source DOAs are estimated using a subspace method such as Prony on the fully recovered ULA. We theoretically provide a sufficient bound for the number of required samples (array elements) for perfect recovery. The numerical comparisons of the proposed method with existing techniques such as atomic-norm minimization and off-the-grid approaches confirm the superiority of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源