论文标题

通过准动力演化改善了变分的量子本质量

Improved variational quantum eigensolver via quasi-dynamical evolution

论文作者

Jattana, Manpreet Singh, Jin, Fengping, De Raedt, Hans, Michielsen, Kristel

论文摘要

变分量子本质量(VQE)是一种专为电流和近期量子设备而设计的杂种量子古典算法。尽管最初取得了成功,但缺乏涉及其几个关键方面的理解。 VQE的问题禁止对量子优势进行有利的缩放。为了减轻问题,我们提出并广泛测试了量子退火的灵感启发,以补充VQE。改进的VQE可以以递归方式具有有效的初始状态制备机制,以实现准动力统一的进化。我们对Heisenberg模型的晶格大小的增加进行了深入的扩展分析,采用了高达$ 40 $ QUBIT的模拟来操纵完整的状态向量。对于当前设备,我们进一步建议使用平均场模型进行基准测试工具包,并在IBM Q设备上对其进行测试。改进的VQE避免了贫瘠的高原,退出当地的最小值,并使用低深度电路。现实的门执行时间比在经典计算机上实现的量子计算机模拟器上估计在无功能错误的量子计算机上完成相同计算的计算时间更长。但是,当无法再存储在古典计算机上时,我们的建议可以帮助对基态能量的准确估算超过50美元,从而实现量子优势。

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm designed for current and near-term quantum devices. Despite its initial success, there is a lack of understanding involving several of its key aspects. There are problems with VQE that forbid a favourable scaling towards quantum advantage. In order to alleviate the problems, we propose and extensively test a quantum annealing inspired heuristic that supplements VQE. The improved VQE enables an efficient initial state preparation mechanism, in a recursive manner, for a quasi-dynamical unitary evolution. We conduct an in-depth scaling analysis of finding the ground state energies with increasing lattice sizes of the Heisenberg model, employing simulations of up to $40$ qubits that manipulate the complete state vector. For the current devices, we further propose a benchmarking toolkit using a mean-field model and test it on IBM Q devices. The improved VQE avoids barren plateaus, exits local minima, and works with low-depth circuits. Realistic gate execution times estimate a longer computational time to complete the same computation on a fully functional error-free quantum computer than on a quantum computer emulator implemented on a classical computer. However, our proposal can be expected to help accurate estimations of the ground state energies beyond $50$ qubits when the complete state vector can no longer be stored on a classical computer, thus enabling quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源