论文标题
计算有限的海森伯格主要功率秩序的光谱序列
Computing a spectral sequence of finite Heisenberg groups of prime power order
论文作者
论文摘要
令$ p \ geq 5 $为素数,令$ n \ geq 2 $为自然数字,让$ \ text {heis}(p^n)$表示Heisenberg Group Modulo $ p^n $。我们研究了与$ \ text {heis}(heis}(p^n)$相关的Lyndon-Hochschild-Serre频谱序列$ e(\ text {heis}(p^n))$被认为是拆分扩展,并表明,$ e(\ e(\ text {heis}(heis}(p^n)(p^n))$在第三页中折叠。此外,对于固定的$ p $,频谱序列$ e(\ text {heis}(p^n))$在第二页上是同构。
Let $p\geq 5$ be a prime number, let $n\geq 2$ be a natural number and let $\text{Heis}(p^n)$ denote the Heisenberg group modulo $p^n$. We study the Lyndon-Hochschild-Serre spectral sequence $E(\text{Heis}(p^n))$ associated to $\text{Heis}(p^n)$ considered as a split extension, and show that, $E(\text{Heis}(p^n))$ collapses in the third page. Moreover, for a fixed $p$, the spectral sequences $E(\text{Heis}(p^n))$ are isomorphic from the second page on.