论文标题
带有随机二聚体疾病的su-schrieffer-Heeger模型中的重进入定位过渡
Reentrant localization transition in the Su-Schrieffer-Heeger model with random-dimer disorder
论文作者
论文摘要
在存在空间相关性疾病的情况下,拓扑绝缘子是否可以在存在稳定的非平凡阶段的问题上是一个基本的问题。基于理论研究,我们分析了随机二聚体障碍对Su-Schrieffer-Heeger模型量子相变的影响。我们明确地表明,由于没有对称性,在某些无序的拓扑非平凡间隙相中,没有间隙边缘状态,并且宽大的对应关系分解。但是,分数端电荷仍然出现在链的末端。间隙边缘状态的能量分布可能性以及分数末端电荷的可能值取决于随机二聚体障碍的浓度。另一方面,随机二聚体障碍和二聚体跳跃以一种有趣的方式交织在一起。出现了重新进入定位过渡行为,这是由反比参与率,归一化参与率和隧道电导率的指纹证明的。
The question of whether the topological insulators can host a stable nontrivial phase in the presence of spatially correlated disorder is a fundamental question of interest. Based on theoretical investigations, we analyze the effect of random-dimer disorder on the quantum phase transitions of the Su-Schrieffer-Heeger model. We explicitly demonstrate that, due to the absence of symmetry, there are no in-gap edge states in certain disordered topological nontrivial gapped phase and the bulk-boundary correspondence breaks down. However, the fractionalized end charges still appear at the ends of the chain. The energy distribution possibility of the in-gap edge states and the possible values of fractionalized end charges are dependent on the concentration of random-dimer disorder. On the other hand, random-dimer disorder and dimer hopping intertwine in an interesting manner. Reentrant localization transition behavior appears, which is evidenced by the fingerprint of the inverse participation ratio, normalized participation ratio, and tunneling conductivity.