论文标题

多元打破式设计

Multivariate Tie-breaker Designs

论文作者

Morrison, Tim P., Owen, Art B.

论文摘要

在打破式设计(TBD)中,具有较高跑步变量值的受试者被给予某些(通常是理想的)治疗方法,值低的受试者不是,并且中间的受试者是随机的。 TBD介于回归不连续设计(RDD)和随机对照试验(RCT)之间。 TBD允许RDD的资源分配效率与RCT的统计效率之间的权衡。我们研究了一个模型,其中预期响应是治疗受试者的一个多元回归,另一个是对照受试者的多元回归。我们提出了一种前瞻性的D-典型性,类似于贝叶斯最佳设计,以了解设计权衡,而无需参考特定数据集。对于给定的协变量,我们展示了如何使用凸优化来选择优化该标准的治疗概率。我们可以纳入各种以经济和道德考虑为动机的约束。在我们的模型中,治疗效果的D-典型性与整个回归的D型焦点相吻合,并且在没有约束的情况下,RCT在全球范围内都是最佳的。我们表明,有利于更多应得的受试者的单调性约束会引起不同治疗概率的稀疏性。我们将凸优化解决方案应用于涉及来自模拟IV-ED数据库的分类数据的半合成示例。

In a tie-breaker design (TBD), subjects with high values of a running variable are given some (usually desirable) treatment, subjects with low values are not, and subjects in the middle are randomized. TBDs are intermediate between regression discontinuity designs (RDDs) and randomized controlled trials (RCTs). TBDs allow a tradeoff between the resource allocation efficiency of an RDD and the statistical efficiency of an RCT. We study a model where the expected response is one multivariate regression for treated subjects and another for control subjects. We propose a prospective D-optimality, analogous to Bayesian optimal design, to understand design tradeoffs without reference to a specific data set. For given covariates, we show how to use convex optimization to choose treatment probabilities that optimize this criterion. We can incorporate a variety of constraints motivated by economic and ethical considerations. In our model, D-optimality for the treatment effect coincides with D-optimality for the whole regression, and, without constraints, an RCT is globally optimal. We show that a monotonicity constraint favoring more deserving subjects induces sparsity in the number of distinct treatment probabilities. We apply the convex optimization solution to a semi-synthetic example involving triage data from the MIMIC-IV-ED database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源