论文标题

Euzn $ _2 $ a $ _2 $的磁性和运输特性各向异性

Anisotropy of the magnetic and transport properties in EuZn$_2$As$_2$

论文作者

Wang, Zhi-Cheng, Been, Emily, Gaudet, Jonathan, Alqasseri, Gadeer Matook A., Fruhling, Kyle, Yao, Xiaohan, Stuhr, Uwe, Zhu, Qinqing, Ren, Zhi, Cui, Yi, Jia, Chunjing, Moritz, Brian, Chowdhury, Sugata, Devereaux, Thomas, Tafti, Fazel

论文摘要

最近的几项研究表明,\ eca \的磁结构中的各向异性在稳定Weyl节点中起着重要作用。为了研究磁各向异性和Weyl物理学之间的关系,我们将Euzn $ _2 $的比较研究为$ _2 $和EUCD $ _2 $作为$ _2 $,是同学,但具有不同的磁动率。我们对Euzn $ _2 $的毫米大小的单晶进行了结构分析,电子传输和磁化实验为$ _2 $,并将结果与​​EUCD $ _2 $的结果比较为$ _2 $。通过将第一个原理计算和中子衍射实验相结合,我们将Euzn $ _2 $的磁接地状态确定为$ _2 $作为A-Type Antypermagnetic Order,并具有过渡温度($ T_ \ Mathrm {n} $ = 19.6 k)两倍的EUCD $ _2 $ _2 $ as $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $。像EUCD $ _2 $ AS $ _2 $一样,Euzn $ _2 $的负磁磁性是$ _2 $在抑制$ T_ \ Mathrm {n} $的电阻率峰后观察到的。但是,在EUZN $ _2 $中,运输和磁化的各向异性都大大降低了为$ _2 $。如电子带计算所示,差异可以归因于较弱的自旋轨道耦合,更本地化的$ d $ - 轨道,以及锌化合物中欧盟$ s $ - 欧洲的较大贡献。相同的频带结构效应也可能导致观察Euzn $ _2 $ as $ _2 $的较小非线性异常霍尔效应,而EUCD $ _2 $则为$ _2 $。

Several recent studies have shown that the anisotropy in the magnetic structure of \ECA\ plays a significant role in stabilizing the Weyl nodes. To investigate the relationship between magnetic anisotropy and Weyl physics, we present a comparative study between EuZn$_2$As$_2$ and EuCd$_2$As$_2$ that are isostructural but with different magnetic anisotropy. We performed structural analysis, electronic transport, and magnetization experiments on millimeter-sized single crystals of EuZn$_2$As$_2$, and compared the results to those of EuCd$_2$As$_2$. By combining the first principle calculations and neutron diffraction experiment, we identify the magnetic ground state of EuZn$_2$As$_2$ as A-type antiferromagnetic order with a transition temperature ($T_\mathrm{N}$ = 19.6 K) twice that of EuCd$_2$As$_2$. Like EuCd$_2$As$_2$, the negative magnetoresistance of EuZn$_2$As$_2$ is observed after suppressing the resistivity peak at $T_\mathrm{N}$ with increasing fields. However, the anisotropy in both transport and magnetization are much reduced in EuZn$_2$As$_2$. The difference could be ascribed to the weaker spin-orbit coupling, more localized $d$-orbitals, and a larger contribution from the Eu $s$-orbitals in the zinc compound, as suggested by the electronic band calculations. The same band structure effect could be also responsible for the observation of a smaller non-linear anomalous Hall effect in EuZn$_2$As$_2$ compared to EuCd$_2$As$_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源