论文标题
使用参数控制屏障功能,适应性自动驾驶汽车的自适应安全合并控制
Adaptive Safe Merging Control for Heterogeneous Autonomous Vehicles using Parametric Control Barrier Functions
论文作者
论文摘要
随着对机器人安全自治的越来越重视,已经对基于模型的安全控制方法(例如控制屏障功能)进行了广泛的研究,以确保在机器人间相互作用期间确保安全性。在本文中,我们介绍了参数控制屏障函数(参数-CBF),这是传统控制屏障函数的一种新型变体,以扩展其在描述异质机器人之间不同安全行为的表现力。自我机器人没有假设使用相同的安全控制器的合作机器人和同质机器人,而是能够通过使用观察到的数据通过不同的参数CBF对相邻机器人的基础安全控制器进行建模。鉴于学到的参数CBF并证明了前进的不变性,它为自我机器人提供了更大的灵活性,可以更好地与其他异质机器人更好地协调效率,同时享受正式证明的安全保证。我们证明了参数-CBF在行为预测和自适应安全控制中的用法在坡道合并方案中,自主驾驶的应用。与传统的CBF相比,参数CBF具有捕获不同驱动程序特征的优势,因为在安全控制的背景下对机器人行为的描述更丰富。给出数值模拟以验证所提出方法的有效性。
With the increasing emphasis on the safe autonomy for robots, model-based safe control approaches such as Control Barrier Functions have been extensively studied to ensure guaranteed safety during inter-robot interactions. In this paper, we introduce the Parametric Control Barrier Function (Parametric-CBF), a novel variant of the traditional Control Barrier Function to extend its expressivity in describing different safe behaviors among heterogeneous robots. Instead of assuming cooperative and homogeneous robots using the same safe controllers, the ego robot is able to model the neighboring robots' underlying safe controllers through different Parametric-CBFs with observed data. Given learned parametric-CBF and proved forward invariance, it provides greater flexibility for the ego robot to better coordinate with other heterogeneous robots with improved efficiency while enjoying formally provable safety guarantees. We demonstrate the usage of Parametric-CBF in behavior prediction and adaptive safe control in the ramp merging scenario from the applications of autonomous driving. Compared to traditional CBF, Parametric-CBF has the advantage of capturing varying drivers' characteristics given richer description of robot behavior in the context of safe control. Numerical simulations are given to validate the effectiveness of the proposed method.