论文标题
具有兼容边界条件的测量LG模型的几何形状
Geometry of gauged LG-model with compatible boundary conditions
论文作者
论文摘要
本文通过计量的witten方程式介绍了测量兰道 - 金茨堡模型的开放式弦浮雕理论的几何形状。给定在哈密顿空间$(m,m,ω,g)上的$ g $ invariant morse-bott holomororphic函数$ w $,$ lefschetz thimbles是由适当的lagrangian submanifolds构建的。 $ W的关键空间的交叉点。$
This paper introduces the geometry of the open string Floer theory of gauged Landau-Ginzburg model via gauged Witten equations. Given a $G$-invariant Morse-Bott holomorphic function $W$ on a Hamiltonian space $(M,ω,G),$ Lefschetz thimbles are constructed from proper Lagrangian submanifolds of critical set of $W.$ We study an energy functional on path space whose gradient flow equation corresponds to the gauged Witten equations with temporal gauge on a strip end, and whose critical points are Lagrangian intersections in the reduced critical space of $W.$