论文标题

RDP-NET:区域详细信息保存更改检测网络

RDP-Net: Region Detail Preserving Network for Change Detection

论文作者

Chen, Hongjia, Pu, Fangling, Yang, Rui, Tang, Rui, Xu, Xin

论文摘要

变化检测(CD)是必不可少的地球观察技术。它捕获了土地对象的动态信息。随着深度学习的兴起,卷积神经网络(CNN)在CD中显示出巨大的潜力。但是,当前的CNN模型引入了骨干体系结构,这些骨干体系结构在学习过程中丢失了详细的信息。此外,当前的CNN模型的参数很重,可以防止其在无人机等边缘设备上的部署。在这项工作中,我们通过提出RDP-NET来解决此问题:一个保护CD网络的区域详细信息。我们提出了一种有效的培训策略,该策略在CNN培训的热身时期内构建培训任务,并让CNN从易于努力到艰苦地学习。培训策略使CNN能够以更少的拖鞋学习更强大的功能,并取得更好的性能。接下来,我们提出有效的边缘损失,以增加细节错误的惩罚,并提高网络对诸如边界区域和小区域之类的细节的关注。此外,我们为CNN模型提供了一个全新的主链,该主链在CD中仅具有170万参数,可实现最先进的经验性能。我们希望我们的RDP-NET能使紧凑型设备上的实际CD应用程序受益,并可以激发更多的人通过高效的培训策略将变化检测带入新的水平。代码和模型可在https://github.com/chnja/rdpnet上公开获得。

Change detection (CD) is an essential earth observation technique. It captures the dynamic information of land objects. With the rise of deep learning, convolutional neural networks (CNN) have shown great potential in CD. However, current CNN models introduce backbone architectures that lose detailed information during learning. Moreover, current CNN models are heavy in parameters, which prevents their deployment on edge devices such as UAVs. In this work, we tackle this issue by proposing RDP-Net: a region detail preserving network for CD. We propose an efficient training strategy that constructs the training tasks during the warmup period of CNN training and lets the CNN learn from easy to hard. The training strategy enables CNN to learn more powerful features with fewer FLOPs and achieve better performance. Next, we propose an effective edge loss that increases the penalty for errors on details and improves the network's attention to details such as boundary regions and small areas. Furthermore, we provide a CNN model with a brand new backbone that achieves the state-of-the-art empirical performance in CD with only 1.70M parameters. We hope our RDP-Net would benefit the practical CD applications on compact devices and could inspire more people to bring change detection to a new level with the efficient training strategy. The code and models are publicly available at https://github.com/Chnja/RDPNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源