论文标题
Lyapunov稳定的链条复发课程
Lyapunov stable chain recurrence classes for singular flows
论文作者
论文摘要
我们表明,对于$ c^1 $通用矢量字段$ x $远离同层次切线,非平凡的Lyapunov稳定链恢复类是同型类别。该证明使用$ C^2 $ vector字段的参数接近$ c^1 $拓扑的$ x $,其gibbs $ f $ states融合到gibbs $ f $ f $ f $ f $ x $。
We show that for a $C^1$ generic vector field $X$ away from homoclinic tangencies, a nontrivial Lyapunov stable chain recurrence class is a homoclinic class. The proof uses an argument with $C^2$ vector fields approaching $X$ in $C^1$ topology, with their Gibbs $F$-states converging to a Gibbs $F$-state of $X$.