论文标题
使用$ \ mathbf {k} \ cdot \ mathbf {p} $信封功能函数方法:应用于铅 - 甲基perovskites的应用
All-order correlation of single excitons in nanocrystals using a $\mathbf{k}\cdot\mathbf{p}$ envelope-function approach: application to lead-halide perovskites
论文作者
论文摘要
我们讨论有效质量和$ \ Mathbf {k} \ cdot \ mathbf {p} $ envelope-unction形式主义的各种多体方法,用于计算半导体纳米晶体(NCS)中相关的单激子(NCS)中的所有订单,以在电子界面互联网中的所有订单。这些方法适用于甲基铅钙钛矿CSPBBR $ _ {3} $的NC,通常将激素与物理可观察物相关相关的物理可观察物中的激素呈现(例如,辐射衰减速率相对于平均值近7 nm的平均值增强的因素增强的因子,辐射衰减率增强,而辐射衰减速率则增强,而nm均为nm nm,则相对于平均值的差异。所考虑的多体方法包括粒子孔 - 盐的方程式,与单个激发的配置相互作用以及与Exchange(RPAE)的随机相近似(RPAE),这些近似值彼此之间密切相关,但可以将$ \ MATHBF {k} \ cdot \ cdot \ cdot \ mathbf {p} $ corcorions与rpae不同。这些方法用于计算相关能,辐射寿命以及对基态激子精细结构的远程库仑的贡献。在较大的NC尺寸的极限下,数值结果证明与该限制的分析结果非常吻合,而这些限制已知。单个激子的相关激发态用于计算单光子吸收横截面;所得的横截面曲线(相对于激光波长)在阈值下的形状,并达到约1 eV的激发能与实验横截面非常吻合。这些方法的方程明确适应了球形对称性(涉及径向积分和角因子),并且以这种形式可以快速计算中间限制系统中的系统。
We discuss a variety of many-body approaches, within effective-mass and $\mathbf{k}\cdot\mathbf{p}$ envelope-function formalisms, for calculating correlated single excitons in semiconductor nanocrystals (NCs) to all orders in the electron-hole Coulomb interaction. These approaches are applied to NCs of the lead-halide perovskite CsPbBr$_{3}$, which typically present excitons in intermediate confinement with physical observables often strongly renormalized by correlation (e.g., radiative decay rate enhanced by a factor of about 7 relative to a mean-field approach, for a NC of edge length 11 nm). The many-body methods considered include the particle-hole Bethe-Salpeter equation, configuration interaction with single excitations, and the random-phase approximation with exchange (RPAE), which are shown to be closely related to each other but to treat $\mathbf{k}\cdot\mathbf{p}$ corrections differently, with RPAE being the most complete method. The methods are applied to calculate the correlation energy, the radiative lifetime, and the long-range Coulomb contribution to the fine structure of the ground-state exciton. In the limit of large NC sizes, the numerical results are shown to agree well with analytical results for this limit, where these are known. Correlated excited states of the single exciton are used to calculate the one-photon absorption cross section; the shape of the resulting cross-section curve (versus laser wavelength) at threshold and up to an excitation energy of about 1 eV is in good agreement with experimental cross sections. The equations for the methods are explicitly adapted to spherical symmetry (involving radial integrals and angular factors) and in this form permit a rapid computation for systems in intermediate confinement.