论文标题

最佳规律性和uhlenbeck的紧凑性,用于一般相对论和杨米尔斯理论

Optimal Regularity and Uhlenbeck Compactness for General Relativity and Yang-Mills Theory

论文作者

Reintjes, Moritz, Temple, Blake

论文摘要

我们宣布,最佳规律性和uhlenbeck紧凑性扩展到与非统计型组的矢量捆绑包上的一般连接设置上,包括一般相对论的Lorentzian指标。紧凑性是建立近似方案有效性的数学分析的必要工具。我们的证明基于与$ l^p $曲率连接的RT方程理论。 RT方程的溶液提供了坐标和量规变换,从而使非最佳连接具有一个衍生物比其Riemann曲率的增益(即,至于最佳的规律性)。 RT方程式是椭圆形的,无论是度量标志,并使双曲双曲线溶液中的奇异性正规化。作为一种应用,GR冲击波处的奇异性是可移动的,这意味着大地曲线,局部惯性坐标和牛顿的极限都存在。通过额外的导数,我们将Uhlenbeck的紧凑性从Uhlenbeck的矢量束设置与紧凑型仪表组相对于riemannian歧管,到紧凑型和非压实仪表组的情况下,而不是非利马尼亚歧管。我们的Uhlenbeck紧凑型版本也可以看作是Div-Curl引理的“几何”改进,从而改善了楔形产品对强收敛的弱连续性。

We announce the extension of optimal regularity and Uhlenbeck compactness to the general setting of connections on vector bundles with non-compact gauge groups over non-Riemannian manifolds, including the Lorentzian metric connections of General Relativity. Compactness is the essential tool of mathematical analysis for establishing validity of approximation schemes. Our proofs are based on the theory of the RT-equations for connections with $L^p$ curvature. Solutions of the RT-equations furnish coordinate and gauge transformations which give a non-optimal connection a gain of one derivative over its Riemann curvature, (i.e., to optimal regularity). The RT-equations are elliptic regardless of metric signature, and regularize singularities in solutions of the hyperbolic Einstein equations. As an application, singularities at GR shock waves are removable, implying geodesic curves, locally inertial coordinates and the Newtonian limit all exist. By the extra derivative we extend Uhlenbeck compactness from Uhlenbeck's setting of vector bundles with compact gauge groups over Riemannian manifolds, to the case of compact and non-compact gauge groups over non-Riemannian manifolds. Our version of Uhlenbeck compactness can also be viewed as a "geometric" improvement of the Div-Curl Lemma, improving weak continuity of wedge products to strong convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源