论文标题

贝叶斯推断公交路线的链接旅行时间相关

Bayesian inference for link travel time correlation of a bus route

论文作者

Chen, Xiaoxu, Cheng, Zhanhong, Sun, Lijun

论文摘要

对许多公交运营申请,例如时间表调度,旅行时间预测和运输服务评估/改进等许多公交运营申请,链接旅行时间相关性的估计对于许多公交运营应用程序至关重要。大多数以前的研究都依赖于独立的假设或简化的局部空间相关结构。然而,在现实世界中,公交路线上的链接旅行时间可以表现出复杂的相关结构,例如远程相关,负相关和时间变化的相关性。因此,在引入强有力的假设之前,必须从现实世界总线操作数据中量化和检查链接旅行时间的相关结构至关重要。为此,本文开发了一种贝叶斯高斯模型,以估计使用类似智能卡的数据的公交路线的链接旅行时间相关矩阵。我们的方法通过从其他总线路由借用/集成这些不完整的观测值(即具有缺失/破烂的值和重叠的链接段)来克服相关矩阵估计中的小样本大小问题。接下来,我们提出一个有效的Gibbs采样框架,以在缺失和破烂的值上边缘化并获得相关矩阵的后验分布。进行了三个数值实验以评估模型性能。我们首先进行合成实验,结果表明,该提出的方法对可靠间隔的旅行时间相关产生了准确的估计。接下来,我们在带有智能卡数据的现实世界公交路线上执行实验。我们的结果表明,该公交路线上都存在本地和远程相关性。最后,我们展示了使用估计的协方差矩阵来对链接和旅行时间进行概率预测的应用。

Estimation of link travel time correlation of a bus route is essential to many bus operation applications, such as timetable scheduling, travel time forecasting and transit service assessment/improvement. Most previous studies rely on either independent assumptions or simplified local spatial correlation structures. In the real world, however, link travel time on a bus route could exhibit complex correlation structures, such as long-range correlations, negative correlations, and time-varying correlations. Therefore, before introducing strong assumptions, it is essential to empirically quantify and examine the correlation structure of link travel time from real-world bus operation data. To this end, this paper develops a Bayesian Gaussian model to estimate the link travel time correlation matrix of a bus route using smart-card-like data. Our method overcomes the small-sample-size problem in correlation matrix estimation by borrowing/integrating those incomplete observations (i.e., with missing/ragged values and overlapped link segments) from other bus routes. Next, we propose an efficient Gibbs sampling framework to marginalize over the missing and ragged values and obtain the posterior distribution of the correlation matrix. Three numerical experiments are conducted to evaluate model performance. We first conduct a synthetic experiment and our results show that the proposed method produces an accurate estimation for travel time correlations with credible intervals. Next, we perform experiments on a real-world bus route with smart card data; our results show that both local and long-range correlations exist on this bus route. Finally, we demonstrate an application of using the estimated covariance matrix to make probabilistic forecasting of link and trip travel time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源