论文标题

噪声对神经形态计算应用的泄漏的集成和射击神经元模型的影响

Effects of noise on leaky integrate-and-fire neuron models for neuromorphic computing applications

论文作者

Thieu, Thi Kim Thoa, Melnik, Roderick

论文摘要

人工神经网络(ANN)已被广泛用于描述生物系统引起的问题并构建神经形态计算模型。受生物神经元启发的第三代ANN,即尖峰神经网络(SNN),可以使人脑更现实。这些领域的大量问题的特征是必须通过集成和开火神经元模型处理神经元,尖峰和突触的组合。由神经元在神经形态计算中的重要应用中的重要应用在生物医学研究中,本工作的主要重点是分析随机输入电流的添加剂和乘法类型的随机耐火周期以及泄漏的集成和传火(Life firation nectaptial(Life)的突触电性神经元模型。我们的分析是在描述细胞膜电位的数值环境中通过Langevin随机动力学进行的。我们提供模型的细节以及代表性的数值示例,并讨论噪声对膜电位的时间演变以及在此处仔细检查的LIF突触电导模型中神经元的尖峰活动的影响。此外,我们的数值结果表明,在LIF突触电导系统中存在随机耐火周期可能会显着影响输出神经元的尖峰列车的不规则性增加。

Artificial neural networks (ANNs) have been extensively used for the description of problems arising from biological systems and for constructing neuromorphic computing models. The third generation of ANNs, namely, spiking neural networks (SNNs), inspired by biological neurons enable a more realistic mimicry of the human brain. A large class of the problems from these domains is characterized by the necessity to deal with the combination of neurons, spikes and synapses via integrate-and-fire neuron models. Motivated by important applications of the integrate-and-fire of neurons in neuromorphic computing for bio-medical studies, the main focus of the present work is on the analysis of the effects of additive and multiplicative types of random input currents together with a random refractory period on a leaky integrate-and-fire (LIF) synaptic conductance neuron model. Our analysis is carried out via Langevin stochastic dynamics in a numerical setting describing a cell membrane potential. We provide the details of the model, as well as representative numerical examples, and discuss the effects of noise on the time evolution of the membrane potential as well as the spiking activities of neurons in the LIF synaptic conductance model scrutinized here. Furthermore, our numerical results demonstrate that the presence of a random refractory period in the LIF synaptic conductance system may substantially influence an increased irregularity of spike trains of the output neuron.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源