论文标题
使用试验数据来大小观测研究以估计动态治疗方案
Using Pilot Data to Size Observational Studies for the Estimation of Dynamic Treatment Regimes
论文作者
论文摘要
人们对开发数据驱动的方法有很大的关注,以根据个人患者特征来调整患者护理。动态治疗方案通过一系列决策规则将其形式化,这些规则将患者信息映射到建议的治疗中。通过使用顺序多个分配随机试验(SMART),可以收集用于估计和评估治疗方案的数据,尽管纵向观察研究通常是由于进行SMART的潜在艰巨的成本而通常使用的。这些研究通常是针对固定治疗序列的简单比较的大小的,或者在观察性研究的情况下,通常不进行先验样本量计算。我们开发了样本量程序,以估算观察性研究的动态治疗方案。我们的方法使用试验数据来确保研究将具有足够的能力来比较最佳政权的价值,即,如果通过遵循最佳政权进行治疗的所有患者,则预期的结果,并具有已知的比较平均值。我们的方法还确保了估计的最佳治疗方案的价值在具有很高概率的真实最佳制度值的先验集范围内。我们通过模拟研究检查了提出的程序的性能,并使用它来大小研究,以使用电子健康记录中的数据来减少抑郁症状。
There has been significant attention given to developing data-driven methods for tailoring patient care based on individual patient characteristics. Dynamic treatment regimes formalize this through a sequence of decision rules that map patient information to a suggested treatment. The data for estimating and evaluating treatment regimes are ideally gathered through the use of Sequential Multiple Assignment Randomized Trials (SMARTs) though longitudinal observational studies are commonly used due to the potentially prohibitive costs of conducting a SMART. These studies are typically sized for simple comparisons of fixed treatment sequences or, in the case of observational studies, a priori sample size calculations are often not performed. We develop sample size procedures for the estimation of dynamic treatment regimes from observational studies. Our approach uses pilot data to ensure a study will have sufficient power for comparing the value of the optimal regime, i.e. the expected outcome if all patients in the population were treated by following the optimal regime, with a known comparison mean. Our approach also ensures the value of the estimated optimal treatment regime is within an a priori set range of the value of the true optimal regime with a high probability. We examine the performance of the proposed procedure with a simulation study and use it to size a study for reducing depressive symptoms using data from electronic health records.