论文标题

沿海渔业收获引起的非线性边界条件的逻辑椭圆方程

Logistic elliptic equation with a nonlinear boundary condition arising from coastal fishery harvesting

论文作者

Umezu, Kenichiro

论文摘要

令$ 0 <q <1 <p $。在这项研究中,我们研究了逻辑椭圆方程$-ΔU= u(1-u^{p-1})$的阳性解决方案,以平滑的有限域$ \ Mathbb {r}^n $,$ n \ geq1 $的$ \ Mathbb {r} $ \partialΩ$。这种非线性边界条件来自沿海渔业收获。当$ p> 1 $是亚批判性时,我们证明,在$λ_Ω> 1 $的情况下,至少有两个$λ> 0 $的正解决方案足够小,但没有$λ> 0 $的正面解决方案。在$λ_Ω<1 $的情况下,每个$λ> 0 $都至少存在一个积极的解决方案。在这里,在Dirichlet边界条件下,$λ_Ω> 0 $是$-δ$的最小特征值。从生态学角度提出了对我们主要结果的解释。

Let $0<q<1<p$. In this study, we investigate positive solutions of the logistic elliptic equation $-Δu = u(1-u^{p-1})$ in a smooth bounded domain $Ω$ of $\mathbb{R}^N$, $N\geq1$, with the nonlinear boundary condition $\frac{\partial u}{\partial ν}=-λu^q$ on $\partialΩ$. This nonlinear boundary condition arises from coastal fishery harvesting. When $p>1$ is subcritical, we prove that in the case of $λ_Ω>1$, there exist at least two positive solutions for $λ>0$ sufficiently small but no positive solutions for $λ>0$ large enough. In the case of $λ_Ω<1$, there exists at least one positive solution for every $λ>0$. Here, $λ_Ω>0$ is the smallest eigenvalue of $-Δ$ under the Dirichlet boundary condition. An interpretation of our main results from an ecological viewpoint is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源