论文标题
Skip-Transformer的雪花点解卷积完成和生成
Snowflake Point Deconvolution for Point Cloud Completion and Generation with Skip-Transformer
论文作者
论文摘要
大多数现有的点云完成方法都具有点云的离散性质和本地区域中点的非结构化预测,这使得很难揭示精美的本地几何细节。为了解决此问题,我们建议使用Snowflake Point Deonvolution(SPD)的Snowflakenet产生完整的点云。 SPD将点云的产生建模为类似雪花的点的生长,在每个SPD之后,通过分裂其父点来逐渐产生子点。我们对详细几何形状的洞察力是在SPD中引入跳过转换器,以了解可以最适合本地区域的分裂模式。 Skip-Transformer利用注意机制总结了上一个SPD层中使用的分裂模式,以在当前层中产生分裂。 SPD生成的局部紧凑和结构化点云精确地揭示了局部斑块中3D形状的结构特征,这使我们能够预测高度详细的几何形状。此外,由于SPD是不限于完成的一般操作,因此我们在其他生成任务中探索其应用程序,包括Point Cloud自动编码,生成,单个图像重建和UPSMPLING。我们的实验结果在广泛使用的基准下优于最先进的方法。
Most existing point cloud completion methods suffer from the discrete nature of point clouds and the unstructured prediction of points in local regions, which makes it difficult to reveal fine local geometric details. To resolve this issue, we propose SnowflakeNet with snowflake point deconvolution (SPD) to generate complete point clouds. SPD models the generation of point clouds as the snowflake-like growth of points, where child points are generated progressively by splitting their parent points after each SPD. Our insight into the detailed geometry is to introduce a skip-transformer in the SPD to learn the point splitting patterns that can best fit the local regions. The skip-transformer leverages attention mechanism to summarize the splitting patterns used in the previous SPD layer to produce the splitting in the current layer. The locally compact and structured point clouds generated by SPD precisely reveal the structural characteristics of the 3D shape in local patches, which enables us to predict highly detailed geometries. Moreover, since SPD is a general operation that is not limited to completion, we explore its applications in other generative tasks, including point cloud auto-encoding, generation, single image reconstruction, and upsampling. Our experimental results outperform state-of-the-art methods under widely used benchmarks.