论文标题
耗散集体自旋模型中的特殊光谱阶段
Exceptional Spectral Phase in a Dissipative Collective Spin Model
论文作者
论文摘要
我们研究了一个量子集体自旋的模型,该模型弱耦合到自旋极化的马尔可夫环境,并发现光谱分为两个区域,我们将我们称为正常且异常的liouvillian光谱阶段。在热力学极限中,特殊的光谱阶段显示仅由二阶特殊点组成的独特特性。结果,任何初始密度矩阵填充该区域的演变都会减慢,无法通过指数衰减的线性组合来描述。该阶段与正常线相分开,其中liouvillian特征值的密度分歧,这种现象类似于在某些封闭的量子系统中观察到的激发态量子相变的现象。在无浴极化的极限下,这种临界性被转移到稳态上,这意味着耗散量子相变和边界时间晶体的形成。
We study a model of a quantum collective spin weakly coupled to a spin-polarized Markovian environment and find that the spectrum is divided into two regions that we name normal and exceptional Liouvillian spectral phases. In the thermodynamic limit, the exceptional spectral phase displays the unique property of being made up exclusively of second order exceptional points. As a consequence, the evolution of any initial density matrix populating this region is slowed down and cannot be described by a linear combination of exponential decays. This phase is separated from the normal one by a critical line in which the density of Liouvillian eigenvalues diverges, a phenomenon analogous to that of excited-state quantum phase transitions observed in some closed quantum systems. In the limit of no bath polarization, this criticality is transferred onto the steady state, implying a dissipative quantum phase transition and the formation of a boundary time crystal.