论文标题

流量的绝对连续性和光谱的奇异性$ t_t \ otimes t_ {at} $

Absolute continuity and singularity of spectra for flows $T_t\otimes T_{at}$

论文作者

Ryzhikov, Valery V.

论文摘要

回答V.I.的问题Oseledets,我们提供一个随机变量$ξ$,以便SUM $ $ $ $ξ(x) +aξ(y)$具有一组参数$ a $密度为$(1, +\ infty)$的单数分布,但是对于另一个密集的参数,此总和具有绝对连续的分布。我们证明了以下断言:给定的$ c,d $,可计数的射线$(1,+\ infty)$的不可接近密度的子集,有一个措施可衡量的流量$ t_t $(在infinite lebesgue Space上作用于Infinite Lebesgue Space),因此自动化$ t_1 \ ot t_1 \ otimimes t_ $ c { $ t_1 \ otimes t_ {d} $都有d $中的所有$ d \的Lebesgue Spectra。该流的光谱度量扮演着我们随机变量$ξ$的分布的作用。

Answering the question of V.I. Oseledets, we present a random variable $ξ$ such that the sum $ξ(x)+aξ(y)$ has a singular distribution for a set of parameters $a$ dense in $(1, +\infty)$, but for another dense set of parameters, this sum has an absolutely continuous distribution. We prove the following assertion: given $C,D$, countable non-intersecting dense subsets of the ray $(1,+\infty)$, there is a measure-preserving flow $T_t$ (acting on the infinite Lebesgue space) such that automorphisms $T_1\otimes T_{c}$ have simple singular spectra for every $c\in C$, and $T_1\otimes T_{d}$ have Lebesgue spectra for all $d\in D$. The spectral measure of this flow plays the role of the distribution of our random variable $ξ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源