论文标题
硅中六量量子处理器的普遍控制
Universal control of a six-qubit quantum processor in silicon
论文作者
论文摘要
能够解决相关问题的未来量子计算机将需要大量可以可靠地操作的量子位。但是,具有大量量子计数和高保真性运行的要求通常是矛盾的。半导体量子点中的旋转表现出长期的前景,但迄今为止使用的演示在一到四个量子位之间,通常优化了单位或两数分操作的保真度,或者初始化和读数。在这里,我们增加了Qubits的数量,并同时实现了普遍运营,状态准备和测量的可观保真度。我们设计,制造和操作一个六克处理器,重点是仔细的哈密顿工程,以高度抽象来编程量子电路和有效的背景校准,所有这些对于在此扩展系统上实现高忠诚都是必不可少的。状态制备通过测量和实时反馈与量子 - 非隔离测量结合了初始化。这些进步将允许测试越来越有意义的量子协议,并构成了大规模量子计算机的主要垫脚石。
Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably. However, the requirements of having a large qubit count and operating with high-fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout. Here we increase the number of qubits and simultaneously achieve respectable fidelities for universal operation, state preparation and measurement. We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering, on a high level of abstraction to program the quantum circuits and on efficient background calibration, all of which are essential to achieve high fidelities on this extended system. State preparation combines initialization by measurement and real-time feedback with quantum-non-demolition measurements. These advances will allow for testing of increasingly meaningful quantum protocols and constitute a major stepping stone towards large-scale quantum computers.