论文标题

自动化的星系 - 果实强透镜建模:不留下镜头

Automated galaxy-galaxy strong lens modelling: no lens left behind

论文作者

Etherington, Amy, Nightingale, James W., Massey, Richard, Cao, XiaoYue, Robertson, Andrew, Amorisco, Nicola C., Amvrosiadis, Aristeidis, Cole, Shaun, Frenk, Carlos S., He, Qiuhan, Li, Ran, Tam, Sut-Ieng

论文摘要

可以将深色和发光物质的分布绘制在重力晶状体背景物体或爱因斯坦环的星系周围。新的调查将很快观察到数十万个星系镜头,而当前的,劳动密集型分析方法将无法降低这一挑战。相反,我们开发了一种全自动的贝叶斯方法,我们使用该方法在统一条件下由哈勃太空望远镜成像的59个镜头样品。我们着手\ textIt {不留镜头},并专注于自动拟合的方式,使少数镜头失败,描述了对管道的调整,使我们能够推断出准确的镜头模型。我们的管道最终适合{\ em all} 59镜头,并具有高成功率关键,因为灾难性异常值会偏向较大的统计误差的大样本。机器学习技术可能会进一步改善两个最困难的步骤:减去前景镜头光,并初始化第一个近似镜头模型。之后,增加模型的复杂性很简单。我们发现在镜头样品中的Einstein Radius的测量值中,我们找到了平均$ \ sim1 \%$的测量精度,{\ em不会与RedShift}降低至少$ z = 0.7 $ - 与其他用于研究Galaxy Evolution的技术形成了鲜明的对比。我们的\ texttt {pyautolens}软件是开源的,也安装在ESA Euclid Mission的科学数据中心中。

The distribution of dark and luminous matter can be mapped around galaxies that gravitationally lens background objects into arcs or Einstein rings. New surveys will soon observe hundreds of thousands of galaxy lenses, and current, labour-intensive analysis methods will not scale up to this challenge. We instead develop a fully automatic, Bayesian method which we use to fit a sample of 59 lenses imaged by the Hubble Space Telescope in uniform conditions. We set out to \textit{leave no lens behind} and focus on ways in which automated fits fail in a small handful of lenses, describing adjustments to the pipeline that allows us to infer accurate lens models. Our pipeline ultimately fits {\em all} 59 lenses in our sample, with a high success rate key because catastrophic outliers would bias large samples with small statistical errors. Machine Learning techniques might further improve the two most difficult steps: subtracting foreground lens light and initialising a first, approximate lens model. After that, increasing model complexity is straightforward. We find a mean $\sim1\%$ measurement precision on the measurement of the Einstein radius across the lens sample which {\em does not degrade with redshift} up to at least $z=0.7$ -- in stark contrast to other techniques used to study galaxy evolution, like stellar dynamics. Our \texttt{PyAutoLens} software is open source, and is also installed in the Science Data Centres of the ESA Euclid mission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源