论文标题

离散的泊松铁杆1D模型和恢复

Discrete Poisson hardcore 1D model and reinfections

论文作者

Cherednik, Ivan

论文摘要

我们建议使用一些有限列表中的行长度的年轻图表进行新的铁杆泊松型分布。采用了时间订购的MatérnII过程的离散变体。这种方法与基于Kerov和其他人引起的交织序列有关,但我们限制了行的数量。假定基本长度与准经典限制中图的总顺序相当,这导致了新的方法和新公式。一个有趣的应用程序是随机步行,在满足经典泊松分布或我们的truncatedone的点处的步骤。在最简单的情况下,人们从Bessel I功能方面获得了分布,该功能提供了对其许多属性的一些概率解释。我们截断的泊松分布的立即应用是建模流行病中的恢复。

We suggest a new hardcore Poisson-type distribution for Young diagrams with the row lengths from some finite list. A discrete variant of the time-ordered Matérn II process in 1D is employed. This approach is related to that based on the interlacing sequences due to Kerov and others, but we restrict the number of rows. The basic lengths are assumed comparable with the total order of the diagram in the quasi-classical limit, which results in new methods and new formulas. An interesting application is to random walks where the steps are at the points satisfying the classical Poisson distribution or our truncatedone. In the simplest case, one obtains the distribution in terms of Bessel I-functions, which provides some probabilistic interpretation of its many properties. An immediate application of our truncated Poisson distributions is to modeling reinfections in epidemics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源