论文标题

免费的午餐,具有影响力功能?通过半参数统计的概念来改善神经网络估计

A Free Lunch with Influence Functions? Improving Neural Network Estimates with Concepts from Semiparametric Statistics

论文作者

Vowels, Matthew J., Akbari, Sina, Camgoz, Necati Cihan, Bowden, Richard

论文摘要

通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生有偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残余偏见。我们探索了影响功能的潜力(IFS)到(a)不需要更多数据(b)提高模型鲁棒性并(c)促进统计推断的潜力(a)。我们首先对IFS进行广泛的介绍,并提出一种神经网络方法“多字”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。

Parameter estimation in empirical fields is usually undertaken using parametric models, and such models readily facilitate statistical inference. Unfortunately, they are unlikely to be sufficiently flexible to be able to adequately model real-world phenomena, and may yield biased estimates. Conversely, non-parametric approaches are flexible but do not readily facilitate statistical inference and may still exhibit residual bias. We explore the potential for Influence Functions (IFs) to (a) improve initial estimators without needing more data (b) increase model robustness and (c) facilitate statistical inference. We begin with a broad introduction to IFs, and propose a neural network method 'MultiNet', which seeks the diversity of an ensemble using a single architecture. We also introduce variants on the IF update step which we call 'MultiStep', and provide a comprehensive evaluation of different approaches. The improvements are found to be dataset dependent, indicating an interaction between the methods used and nature of the data generating process. Our experiments highlight the need for practitioners to check the consistency of their findings, potentially by undertaking multiple analyses with different combinations of estimators. We also show that it is possible to improve existing neural networks for `free', without needing more data, and without needing to retrain them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源