论文标题
多体定位在二维中的稳定机制
A stabilization mechanism for many-body localization in two dimensions
论文作者
论文摘要
在冷原子系统中进行的实验看到了一维($ d = 1 $)和二维($ d = 2 $)系统的许多身体定位(MBL)几乎相同的签名,尽管热雪崩假设表明MBL相对于$ d> 1 $不稳定。基础的热雪崩参数是局部运动积分(LIOMS)的指数定位的假设。在这项工作中,我们证明了添加限制电位(在实验设置中典型的典型)允许非相互作用的无序系统具有超过指数(高斯)的局部波函数和相互作用的无序系统来进行本地化过渡。此外,我们表明MBL LIOM的高斯定位将量子雪崩临界维度从$ d = 1 $转移到$ d = 2 $,有可能在这些系统中MBL的实验演示与现有的理论论证之间的鸿沟弥合了鸿沟,声称这种示威是不可能的。
Experiments in cold atom systems see almost identical signatures of many body localization (MBL) in both one-dimensional ($d=1$) and two-dimensional ($d=2$) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for $d>1$. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOMs). In this work we demonstrate that addition of a confining potential -- as is typical in experimental setups -- allows a non-interacting disordered system to have super-exponentially (Gaussian) localized wavefunctions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOMs shifts the quantum avalanche critical dimension from $d=1$ to $d=2$, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible.