论文标题
关于克利福德代数的共同体学说明
A note on cohomology of Clifford algebras
论文作者
论文摘要
在本文中,我们以组合方式构建了一个复杂的Clifford代数的Cochain复合物,其本身具有系数,我们将{\ it Clifford coomomology。}称为相应的同胞。我们还研究了复杂的Clifford代数束的平滑部分的代数的Hochschild共同体学组和正式变形,这是在均匀的可定向的Riemannian歧管\(M \)上,该歧管(M \)允许A \(Spin^{C}} \)结构。
In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by {\it Clifford cohomology.} We show that {\it Clifford cohomology} controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold \(M\) which admits a \(Spin^{c}\) structure.