论文标题
temperley-lieb代数的同源性在奇数上
The homology of a Temperley-Lieb algebra on an odd number of strands
论文作者
论文摘要
我们表明,任何temperley-lieb代数$ \ mathcal {tl} _n(a)$的同源性在奇数链上消失在正学位上。这改善了博伊德·赫普沃思(Boyd-Hepworth)获得的结果。此外,我们为博伊德·赫普沃思(Boyd-Hepworth)的两个消失结果提出了替代论点。 (1)Temperley-Lieb代数的稳定同源性是微不足道的。 (2)如果r $中的参数$ a \是一个单元,则任何temperley-lieb代数的同源物集中在零度上。
We show that the homology of any Temperley-Lieb algebra $\mathcal{TL}_n(a)$ on an odd number of strands vanishes in positive degrees. This improves a result obtained by Boyd-Hepworth. In addition we present alternative arguments for the following two vanishing results of Boyd-Hepworth. (1) The stable homology of Temperley-Lieb algebras is trivial. (2) If the parameter $a \in R$ is a unit, then the homology of any Temperley-Lieb algebra is concentrated in degree zero.