论文标题
在广义环流派生上
On generalized cyclotomic derivations
论文作者
论文摘要
在本文中,我们研究了$ k $ k [x] $的广义环形$ k $ derivation $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ k $ d $ d $ d $ d $ k [x] $的理性常数和darboux多项式领域。结果表明,$ d $在且仅当$ k(x)^d = k $时,没有darboux多项式。还在多项式代数的张量产物中研究了结果。
In this article we study the field of rational constants and Darboux polynomials of a generalized cyclotomic $K$-derivation $d$ of $K[X]$. It is shown that $d$ is without Darboux polynomials if and only if $K(X)^d=K$. Result is also studied in the tensor product of polynomial algebras.