论文标题
使用本地模块构建非犹太模块化类别
Constructing non-semisimple modular categories with local modules
论文作者
论文摘要
我们在(非避免)模块化类别中定义了刚性frobenius代数的类别,并证明它们的局部模块类别是模块化的。这概括了A. Kirillov,Jr。和V. Ostrik的先前工作[adv。数学。 171(2002),否。 2]在半圣设置中。提供了通过局部模块的非偏膜模块类别的示例,以及与作者先前在相对单体中心的工作的联系。特别是,我们将模块类别中心的刚性frobenius代数分类为组代数,从而概括了A. Davydov的分类[J.代数323(2010),第1期。 5]任意特征。
We define the class of rigid Frobenius algebras in a (non-semisimple) modular category and prove that their categories of local modules are, again, modular. This generalizes previous work of A. Kirillov, Jr. and V. Ostrik [Adv. Math. 171 (2002), no. 2] in the semisimple setup. Examples of non-semisimple modular categories via local modules, as well as connections to the authors' prior work on relative monoidal centers, are provided. In particular, we classify rigid Frobenius algebras in Drinfeld centers of module categories over group algebras, thus generalizing the classification by A. Davydov [J. Algebra 323 (2010), no. 5] to arbitrary characteristic.