论文标题

准周期驱动的一维系统中的定位和离域特性

Localization and delocalization properties in quasi-periodically driven one-dimensional disordered system

论文作者

Yamada, Hiroaki S., Ikeda, Kensuke S.

论文摘要

系统地研究了$ m $颜色的准周期性谐波振荡在时间连续的一维安德森模型中的定位和定位,系统地研究了$ m $颜色的颜色,该模型已由初步信件[\ bf 103},L040202(L040202)(20221)]进行了预赛。我们详细研究了模型在三个参数方面的本地化范围化特性:无序强度$ W $,扰动强度$ε$和颜色$ m $的数量,该颜色$ m $扮演着相似的空间维度。特别是,注意力集中在存在定位 - 迁移转变(LDT)及其关键特性上。对于$ m \ geq 3 $,LDT存在,正常扩散被恢复在关键强度$ε$之上,而扩散动力学的特征模仿了随机扰动的安德森模型预测的扩散过程,即使$ m $不大。将这些结果与时间滴定量子图的结果(即Anderson Map and Standard Map)进行比较。此外,与没有静态无序部分的极限模型相比,讨论了离域动力学的特征。

Localization and delocalization of quantum diffusion in time-continuous one-dimensional Anderson model perturbed by the quasi-periodic harmonic oscillations of $M$ colors is investigated systematically, which has been partly reported by the preliminary letter [PRE {\bf 103}, L040202(2021)]. We investigate in detail the localization-delocalization characteristics of the model with respect to three parameters: the disorder strength $W$, the perturbation strength $ε$ and the number of the colors $M$ which plays the similar role of spatial dimension. In particular, attentions are focused on the presence of localization-delocalization transition (LDT) and its critical properties. For $M\geq 3$ the LDT exists and a normal diffusion is recovered above a critical strength $ε$, and the characteristics of diffusion dynamics mimic the diffusion process predicted for the stochastically perturbed Anderson model even though $M$ is not large. These results are compared with the results of time-discrete quantum maps, i.e., Anderson map and the standard map. Further, the features of delocalized dynamics is discussed in comparison with a limit model which has no static disordered part.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源