论文标题

干部:基于视觉的自主城市驾驶的级联深钢筋学习框架

CADRE: A Cascade Deep Reinforcement Learning Framework for Vision-based Autonomous Urban Driving

论文作者

Zhao, Yinuo, Wu, Kun, Xu, Zhiyuan, Che, Zhengping, Lu, Qi, Tang, Jian, Liu, Chi Harold

论文摘要

由于城市环境的复杂和驾驶行为的动态,基于视觉的自主城市驾驶在茂密的交通中非常具有挑战性。广泛应用的方法在很大程度上依赖于手工制作的规则,或者从有限的人类经验中学习,这使它们难以推广到罕见但关键的情况。在本文中,我们提出了一个新颖的级联深入增强学习框架,以实现基于无模型的自主城市驾驶。在干部中,为了从原始观察中获取代表性的潜在特征,我们首先离线训练一个共同注意感知模块(COPM),该模块(COPM)利用共同注意机制从预采用的驾驶数据集中学习视觉和控制信息之间的相互关系。然后,在冷冻的COPM上,我们提出了一个有效的分布式近端政策优化框架,以在线学习在特别设计的奖励功能的指导下学习驾驶政策。我们通过Carla Nocrash基准和自动城市驾驶任务中的特定障碍避免情况进行了全面的实证研究。实验结果很好地证明了干部的有效性及其优越性,其优势在很大程度上是合理的。

Vision-based autonomous urban driving in dense traffic is quite challenging due to the complicated urban environment and the dynamics of the driving behaviors. Widely-applied methods either heavily rely on hand-crafted rules or learn from limited human experience, which makes them hard to generalize to rare but critical scenarios. In this paper, we present a novel CAscade Deep REinforcement learning framework, CADRE, to achieve model-free vision-based autonomous urban driving. In CADRE, to derive representative latent features from raw observations, we first offline train a Co-attention Perception Module (CoPM) that leverages the co-attention mechanism to learn the inter-relationships between the visual and control information from a pre-collected driving dataset. Cascaded by the frozen CoPM, we then present an efficient distributed proximal policy optimization framework to online learn the driving policy under the guidance of particularly designed reward functions. We perform a comprehensive empirical study with the CARLA NoCrash benchmark as well as specific obstacle avoidance scenarios in autonomous urban driving tasks. The experimental results well justify the effectiveness of CADRE and its superiority over the state-of-the-art by a wide margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源