论文标题
设计基础:基于数据驱动的离线模型优化的基准测试
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
论文作者
论文摘要
基于黑框模型的优化(MBO)问题,其目标是找到最大化目标函数的设计输入,在广泛的域中无处不在,例如蛋白质,DNA序列,飞机和机器人的设计。解决基于模型的优化问题通常需要在设计建议上积极查询未知的目标函数,这意味着对候选分子,飞机或机器人进行物理构建,对其进行测试并存储结果。这个过程可能是昂贵且耗时的,而是只使用已经拥有的数据来优化最佳设计。与更常见的在线技术相比,这种称为离线MBO的设置构成了实质性和不同的算法挑战。最近的许多作品证明了使用高容量深度神经网络的离线MBO在高维优化问题方面取得了成功。但是,在这个新兴领域缺乏标准化的基准,使得进步难以跟踪。为了解决这个问题,我们提出了Design Bench,这是离线MBO的基准,并具有统一的评估协议和最新方法的参考实现。我们的基准包括一套由生物学,材料科学和机器人技术中的现实优化问题衍生出的各种和现实的任务,这些任务对离线MBO带来了独特的挑战。我们的基准和参考实现在github.com/rail-berkeley/design-bench和github.com/rail-berkeley/design-baselines上发布。
Black-box model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function, are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots. Solving model-based optimization problems typically requires actively querying the unknown objective function on design proposals, which means physically building the candidate molecule, aircraft, or robot, testing it, and storing the result. This process can be expensive and time consuming, and one might instead prefer to optimize for the best design using only the data one already has. This setting -- called offline MBO -- poses substantial and different algorithmic challenges than more commonly studied online techniques. A number of recent works have demonstrated success with offline MBO for high-dimensional optimization problems using high-capacity deep neural networks. However, the lack of standardized benchmarks in this emerging field is making progress difficult to track. To address this, we present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods. Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics that present distinct challenges for offline MBO. Our benchmark and reference implementations are released at github.com/rail-berkeley/design-bench and github.com/rail-berkeley/design-baselines.