论文标题

浅量子电路的近似输出概率,这些电路在任何固定尺寸上都是几何本地的

Approximating Output Probabilities of Shallow Quantum Circuits which are Geometrically-local in any Fixed Dimension

论文作者

Dontha, Suchetan, Tan, Shi Jie Samuel, Smith, Stephen, Choi, Sangheon, Coudron, Matthew

论文摘要

我们提出了一种经典算法,对于任何$ d $维的几何环境,量子电路$ c $ polygarithmic-depth,以及{0,1}^n $中的任何位字符串$ x \ in {0,1}^n $,都可以计算数量$ | <x | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | c | otime对于任何固定尺寸$ d $的准多项式时间。这是结果[CC21]的扩展,最初证明了$ d = 3 $的结果。要查看为什么这很有趣,请注意,虽然$ d = 1 $的情况是根据数十年来闻名的矩阵产品状态的标准使用,但$ d = 2 $案例需要的小说和有趣的技术和有趣的技术在[BGM19]中引入。扩展到案例$ d = 3 $更加艰辛,需要进一步的[CC21]中引入的新技术。我们在这里的工作表明,在处理每个新维度的情况下,历史上需要新的见解和固定算法原始的原始词,基于$ d \ leq 3 $的已知技术,我们现在可以处理任何固定尺寸$ d> 3 $。 我们的算法使用[CC21]的划分框架框架通过相同问题类型的几个实例化来近似所需的数量,每种涉及$ d $二维的电路,大约是原始Qubits数量的一半。然后递归地采用此分区步骤,直到$ d^{th} $维度中递归分解的电路的宽度如此之小,以至于它们可以有效地将它们视为$(d-1)$ - 维度问题,通过吸收$ d^{th} $ dimensive in qudit dimensive of qudit结构中的$ d^{th} $宽度的宽度。主要的技术挑战在于确保[CC21]的递归电路分解和错误分析的部分涉及部分仍然存在于更高的维度,这需要在某些地方对分析进行小修改。

We present a classical algorithm that, for any $D$-dimensional geometrically-local, quantum circuit $C$ of polylogarithmic-depth, and any bit string $x \in {0,1}^n$, can compute the quantity $|<x|C|0^{\otimes n}>|^2$ to within any inverse-polynomial additive error in quasi-polynomial time, for any fixed dimension $D$. This is an extension of the result [CC21], which originally proved this result for $D = 3$. To see why this is interesting, note that, while the $D = 1$ case of this result follows from standard use of Matrix Product States, known for decades, the $D = 2$ case required novel and interesting techniques introduced in [BGM19]. Extending to the case $D = 3$ was even more laborious and required further new techniques introduced in [CC21]. Our work here shows that, while handling each new dimension has historically required a new insight, and fixed algorithmic primitive, based on known techniques for $D \leq 3$, we can now handle any fixed dimension $D > 3$. Our algorithm uses the Divide-and-Conquer framework of [CC21] to approximate the desired quantity via several instantiations of the same problem type, each involving $D$-dimensional circuits on about half the number of qubits as the original. This division step is then applied recursively, until the width of the recursively decomposed circuits in the $D^{th}$ dimension is so small that they can effectively be regarded as $(D-1)$-dimensional problems by absorbing the small width in the $D^{th}$ dimension into the qudit structure at the cost of a moderate increase in runtime. The main technical challenge lies in ensuring that the more involved portions of the recursive circuit decomposition and error analysis from [CC21] still hold in higher dimensions, which requires small modifications to the analysis in some places.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源