论文标题
SAT后门:深度跳动尺寸
SAT Backdoors: Depth Beats Size
论文作者
论文摘要
几十年来,已经为确定可以在多项式时间确定的CNF公式的类别中付出了很多努力。经典结果是角公式(Aspvall,Plass和Tarjan,1979)和Krom(即2CNF)公式(Dowling and Gallier,1984)的线性时间障碍。 Williams Gomes和Selman(2003)引入的后门逐渐将这样的可行类扩展到所有有界距离的公式到班级。后门尺寸提供了一个天然但相当粗糙的距离尺寸,在公式和可拖动类之间。后门深度,由Mählmann,Siebertz和Vigny(2021)引入,是一个更精致的距离度量,该度量承认并行使用不同的后门变量。有限的后门尺寸意味着有界的后门深度,但是有恒定的后门深度和任意大型后门大小的公式。 我们建议FPT近似算法将后门深度计算到类Horn和Krom中。这导致了一种线性时间算法,以确定有限后门深度公式在这些类中的满意度。我们将FPT近似算法以精致的障碍物概念为基础,从而以各种方式扩展了Mählmann等人的梗阻树,包括增加分离器障碍物。我们通过一个新的游戏理论框架来开发算法,从而简化了有关后门的推理。 最后,我们表明有界的后门深度捕获了未通过任何已知方法捕获的CNF公式的可拖动类。
For several decades, much effort has been put into identifying classes of CNF formulas whose satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and Gallier, 1984). Backdoors, introduced by Williams Gomes and Selman (2003), gradually extend such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a formula and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large backdoor size. We propose FPT approximation algorithms to compute backdoor depth into the classes Horn and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated notion of obstructions, extending Mählmann et al.'s obstruction trees in various ways, including the addition of separator obstructions. We develop the algorithm through a new game-theoretic framework that simplifies the reasoning about backdoors. Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not captured by any known method.