论文标题
非线性动力学的单轨迹非参数学习
Single Trajectory Nonparametric Learning of Nonlinear Dynamics
论文作者
论文摘要
给定动态系统的单个轨迹,我们分析了非参数最小二乘估计量(LSE)的性能。更确切地说,我们给出了LSE和真实回归函数之间的非反应预期$ l^2 $延伸范围,在新的,反事实,轨迹上评估期望。我们利用最近开发的信息理论方法来建立LSE在非参数假设类别中的最佳性,该类别以典范公制熵和subgaussian参数为角度。接下来,我们将此次高斯参数与使用动力学系统理论概念的基础过程的稳定性相关联。合并后,这些发展会导致速率 - 最佳误差界限,以缩放为$ t^{ - 1/(2+q)} $,用于适当稳定的过程和假设类,并具有订单$δ^{ - q} $的度量熵增长。在这里,$ t $是观察到的轨迹的长度,$δ\ in \ mathbb {r} _+$是包装粒度,而$ q \ in(0,2)$是一个复杂的术语。最后,我们将结果专门针对许多实际兴趣的方案,例如Lipschitz动力学,广义线性模型以及通过某些繁殖核心Hilbert Space(RKHS)的功能描述的动力学。
Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE). More precisely, we give nonasymptotic expected $l^2$-distance bounds between the LSE and the true regression function, where expectation is evaluated on a fresh, counterfactual, trajectory. We leverage recently developed information-theoretic methods to establish the optimality of the LSE for nonparametric hypotheses classes in terms of supremum norm metric entropy and a subgaussian parameter. Next, we relate this subgaussian parameter to the stability of the underlying process using notions from dynamical systems theory. When combined, these developments lead to rate-optimal error bounds that scale as $T^{-1/(2+q)}$ for suitably stable processes and hypothesis classes with metric entropy growth of order $δ^{-q}$. Here, $T$ is the length of the observed trajectory, $δ\in \mathbb{R}_+$ is the packing granularity and $q\in (0,2)$ is a complexity term. Finally, we specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS).