论文标题

图像数据库中的差异隐私化:一种基于原理组件分析逆向的轻量级图像差异隐私方法

Contextualize differential privacy in image database: a lightweight image differential privacy approach based on principle component analysis inverse

论文作者

Zhang, Shiliang, Ma, Xuehui, Cao, Hui, Zhao, Tengyuan, Yu, Yajie, Wang, Zhuzhu

论文摘要

差异隐私(DP)一直是在数据库中保留对隐私敏感信息的事实标准。然而,在图像数据库中缺乏对DP的清晰而令人信服的上下文化,在此,当DP施加DP时,可以实现和观察到单个图像对某些分析的不可区分贡献。结果,在差异私人图像数据库的背景下,由于集成DP而导致的隐私准确性权衡不足。这项工作旨在通过将概念差异隐私与图像整合到图像数据库中的DP上下文化。为此,我们设计了一种轻巧的方法,该方法致力于将图像数据库私有化,并将图像数据库的统计语义保存到可调级别,同时使单个图像对此类统计信息的贡献无法区分。设计的方法利用原理组件分析(PCA)将具有大量属性的原始图像减少到执行DP的较低尺寸空间,以减少计算敏感性属性的DP负载。通过PCA反向可视化DP的图像数据,以其私有化的格式看不见,以使人和机器检查员都可以评估私有化并量化隐私准确性的权衡,以分析私有化的图像数据库。使用设计的方法,我们通过基于深度学习模型的两个用例证明了图像中DP的上下文化,我们在其中证明了由DP引起的单个图像的不可区分性以及私有化图像在深度学习任务中对统计语义的保留,这是通过对不同私人私人化设置对私人 - accuracy-accuracy侵犯的定量分析来精心阐述的。

Differential privacy (DP) has been the de-facto standard to preserve privacy-sensitive information in database. Nevertheless, there lacks a clear and convincing contextualization of DP in image database, where individual images' indistinguishable contribution to a certain analysis can be achieved and observed when DP is exerted. As a result, the privacy-accuracy trade-off due to integrating DP is insufficiently demonstrated in the context of differentially-private image database. This work aims at contextualizing DP in image database by an explicit and intuitive demonstration of integrating conceptional differential privacy with images. To this end, we design a lightweight approach dedicating to privatizing image database as a whole and preserving the statistical semantics of the image database to an adjustable level, while making individual images' contribution to such statistics indistinguishable. The designed approach leverages principle component analysis (PCA) to reduce the raw image with large amount of attributes to a lower dimensional space whereby DP is performed, so as to decrease the DP load of calculating sensitivity attribute-by-attribute. The DP-exerted image data, which is not visible in its privatized format, is visualized through PCA inverse such that both a human and machine inspector can evaluate the privatization and quantify the privacy-accuracy trade-off in an analysis on the privatized image database. Using the devised approach, we demonstrate the contextualization of DP in images by two use cases based on deep learning models, where we show the indistinguishability of individual images induced by DP and the privatized images' retention of statistical semantics in deep learning tasks, which is elaborated by quantitative analyses on the privacy-accuracy trade-off under different privatization settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源