论文标题
并行的贝叶斯方法,用于加速重力波背景表征
A Parallelized Bayesian Approach To Accelerated Gravitational-Wave Background Characterization
论文作者
论文摘要
Nanohertz频率重力波(GWS)具有脉冲星定位阵列的表征需要持续扩展数据集和受监测的脉冲星。尽管检测随机GW背景是基于测量脉冲间相关性的独特模式,但表征背景光谱的表征是由在单个脉冲星的功率谱中编码的信息驱动的。我们提出了一种新技术,用于对随机GW背景的快速贝叶斯表征,该技术在PULSAR数据集上完全并行。这种分解的可能性(FL)技术赋予了GW背景参数估计的模块化方法,对频谱符号随机过程的多阶段模型选择和脉冲间相关性的多个阶段模型选择,以及在独立的Pulsar子分子之间测量的信号的统计交叉验证。我们证明了该技术的功效与完整的脉冲星数阵列的可能性相等,但在所需时间的一小部分中。我们的技术快速,易于实现,并且琐碎地允许将新的数据和脉冲星与旧数据集合结合,而无需重新分析后者。
The characterization of nanohertz-frequency gravitational waves (GWs) with pulsar-timing arrays requires a continual expansion of datasets and monitored pulsars. Whereas detection of the stochastic GW background is predicated on measuring a distinctive pattern of inter-pulsar correlations, characterizing the background's spectrum is driven by information encoded in the power spectra of the individual pulsars' time series. We propose a new technique for rapid Bayesian characterization of the stochastic GW background that is fully parallelized over pulsar datasets. This Factorized Likelihood (FL) technique empowers a modular approach to parameter estimation of the GW background, multi-stage model selection of a spectrally-common stochastic process and quadrupolar inter-pulsar correlations, and statistical cross-validation of measured signals between independent pulsar sub-arrays. We demonstrate the equivalence of this technique's efficacy with the full pulsar-timing array likelihood, yet at a fraction of the required time. Our technique is fast, easily implemented, and trivially allows for new data and pulsars to be combined with legacy datasets without re-analysis of the latter.