论文标题
带有三角点组的流体动力学
Hydrodynamics with triangular point group
论文作者
论文摘要
当二维流体的连续旋转不变性被打破到离散的二面亚组$ d_6 $ - 等边三角形的点组时 - 由此产生的各向异性流体动力学会破坏空间倒置和时间反向的符号,同时保存其组合。在这项工作中,我们介绍了这种$ D_6 $流体的流体动力学,并在运动的运动方程式中识别了新的对称对称性的耗散术语。我们提出了两个实验 - 均涉及具有$ d_6 $ invariant fermi表面的高纯度固态材料 - 它们在$ d_6 $的电子流体中对这些新系数敏感。特别是,我们在六边形设备中提出了一个局部当前的成像实验(当前可以通过氮空位中心磁力计实现),其$ d_6 $ - 探索边界条件可以明确检测这些新型运输系数。
When continuous rotational invariance of a two-dimensional fluid is broken to the discrete, dihedral subgroup $D_6$ - the point group of an equilateral triangle - the resulting anisotropic hydrodynamics breaks both spatial-inversion and time-reversal symmetries, while preserving their combination. In this work, we present the hydrodynamics of such $D_6$ fluids, identifying new symmetry-allowed dissipative terms in the hydrodynamic equations of motion. We propose two experiments - both involving high-purity solid-state materials with $D_6$-invariant Fermi surfaces - that are sensitive to these new coefficients in a $D_6$ fluid of electrons. In particular, we propose a local current imaging experiment (which is present-day realizable with nitrogen vacancy center magnetometry) in a hexagonal device, whose $D_6$-exploiting boundary conditions enable the unambiguous detection of these novel transport coefficients.