论文标题

通过黑暗能源调查进行弱透镜和聚类分析的强大采样

Robust sampling for weak lensing and clustering analyses with the Dark Energy Survey

论文作者

Lemos, P., Weaverdyck, N., Rollins, R. P., Muir, J., Ferté, A., Liddle, A. R., Campos, A., Huterer, D., Raveri, M., Zuntz, J., Di Valentino, E., Fang, X., Hartley, W. G., Aguena, M., Allam, S., Annis, J., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Choi, A., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Dietrich, J. P., Everett, S., Ferrero, I., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J.

论文摘要

最近的宇宙学分析取决于从高维后分布中准确采样的能力。该领域已应用多种算法,但是通常缺乏特定采样器选择和设置的理由。在这里,我们调查了三个这样的采样器,以激励和验证对弱透镜和星系簇的联合测量结果的最初三年(y3)数据(y3)的算法和设置。我们采用了整个DES 1年级的可能性以及更快的近似可能性,这使我们能够评估每个采样器选择的结果,并证明了我们的全部结果的鲁棒性。我们发现,贝叶斯证据的椭圆形嵌套采样算法$ \ texttt {muttinest} $报告不一致的估计值和较窄的参数可信间隔比在$ \ texttt {polychord} $中实现的切成成索的采样更窄。我们将发现从$ \ texttt {multinest} $和$ \ texttt {polychord} $与来自大都会杂货店算法的参数推断进行比较,找到了很好的协议。我们确定$ \ texttt {polychord} $提供了良好的速度和稳健性平衡,并为测试目的和最终链提供了不同的设置,以使用DES Y3数据进行分析。我们的方法可以很容易地复制以获得适当的采样器设置以进行未来的调查。

Recent cosmological analyses rely on the ability to accurately sample from high-dimensional posterior distributions. A variety of algorithms have been applied in the field, but justification of the particular sampler choice and settings is often lacking. Here we investigate three such samplers to motivate and validate the algorithm and settings used for the Dark Energy Survey (DES) analyses of the first 3 years (Y3) of data from combined measurements of weak lensing and galaxy clustering. We employ the full DES Year 1 likelihood alongside a much faster approximate likelihood, which enables us to assess the outcomes from each sampler choice and demonstrate the robustness of our full results. We find that the ellipsoidal nested sampling algorithm $\texttt{MultiNest}$ reports inconsistent estimates of the Bayesian evidence and somewhat narrower parameter credible intervals than the sliced nested sampling implemented in $\texttt{PolyChord}$. We compare the findings from $\texttt{MultiNest}$ and $\texttt{PolyChord}$ with parameter inference from the Metropolis-Hastings algorithm, finding good agreement. We determine that $\texttt{PolyChord}$ provides a good balance of speed and robustness, and recommend different settings for testing purposes and final chains for analyses with DES Y3 data. Our methodology can readily be reproduced to obtain suitable sampler settings for future surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源