论文标题
平均度限制下的图形分区
Graph Partitions Under Average Degree Constraint
论文作者
论文摘要
在本文中,我们证明,平均程度至少$ s+t+2 $的每个图都有两个部分的顶点分区,因此一个零件的平均程度至少至少$ s $,而另一部分的平均水平至少具有至少$ t $。这解决了Csóka,Lo,Norin,Wu和Yepremyan的猜想。
In this paper, we prove that every graph with average degree at least $s+t+2$ has a vertex partition into two parts, such that one part has average degree at least $s$, and the other part has average degree at least $t$. This solves a conjecture of Csóka, Lo, Norin, Wu and Yepremyan.