论文标题

预测过程监视结果的解释性:您能看到我的数据问题吗?

Explainability of Predictive Process Monitoring Results: Can You See My Data Issues?

论文作者

Elkhawaga, Ghada, Abuelkheir, Mervat, Reichert, Manfred

论文摘要

预测业务流程监控(PPM)已成为流程挖掘的用例。 PPM通过预测有关运行过程实例如何结束,相关性能指标和其他可预测方面的相关信息来预见业务流程的未来。 PPM大量方法采用了机器学习(ML)技术来解决预测任务,尤其是非过程意识的PPM方法。因此,PPM继承了ML方法所面临的挑战。这些挑战之一是需要对产生的预测获得用户信任的必要性。可解释的人工智能(XAI)领域解决了这个问题。但是,除了ML模型特征外,选择了PPM任务中的选择以及PPM任务中采用的技术。缺少不同设置对生成解释的影响的比较。为了解决这一差距,我们研究了不同PPM设置对馈入ML模型的数据的影响,从而将其送入XAI方法。我们研究结果解释的差异如何表明基础数据的几个问题。我们为我们的实验构建一个框架,包括在PPM的每个阶段的不同设置,XAI作为基本部分集成。我们的实验揭示了数据特征(因此对这些数据的期望)之间的几个不一致以及协议,ML模型通过查询它而使用的重要数据以及研究了研究的ML模型的预测。

Predictive business process monitoring (PPM) has been around for several years as a use case of process mining. PPM enables foreseeing the future of a business process through predicting relevant information about how a running process instance might end, related performance indicators, and other predictable aspects. A big share of PPM approaches adopts a Machine Learning (ML) technique to address a prediction task, especially non-process-aware PPM approaches. Consequently, PPM inherits the challenges faced by ML approaches. One of these challenges concerns the need to gain user trust in the predictions generated. The field of explainable artificial intelligence (XAI) addresses this issue. However, the choices made, and the techniques employed in a PPM task, in addition to ML model characteristics, influence resulting explanations. A comparison of the influence of different settings on the generated explanations is missing. To address this gap, we investigate the effect of different PPM settings on resulting data fed into an ML model and consequently to a XAI method. We study how differences in resulting explanations may indicate several issues in underlying data. We construct a framework for our experiments including different settings at each stage of PPM with XAI integrated as a fundamental part. Our experiments reveal several inconsistencies, as well as agreements, between data characteristics (and hence expectations about these data), important data used by the ML model as a result of querying it, and explanations of predictions of the investigated ML model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源