论文标题
普朗克抖动:反对颜色抖动对自制训练的颜色散发效果
Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training
论文作者
论文摘要
通过将同一图像的不同增强映射到相同的特征表示形式,可以培训有关自我监管学习的最新作品。所使用的数据增强对于学习特征表示的质量至关重要。在本文中,我们分析了传统上在数据增强中使用的颜色抖动如何对学习特征表示形式中的颜色特征的质量产生负面影响。为了解决这个问题,我们提出了一种更现实的,基于物理的颜色数据增强(我们称为Planckian抖动),从而创造了逼真的色彩变化,并产生了一种模型对照明变化的强大变化,在现实生活中通常可以观察到,同时维持基于颜色信息来区分图像内容的能力。实验证实,这种表示形式与当前使用的颜色抖动增强所学的表示形式相辅相成,并且简单的串联导致在广泛的下游数据集上的性能增长显着。此外,我们还提出了颜色灵敏度分析,该分析记录了不同训练方法对模型神经元的影响,并表明学习特征的性能在照明变化方面是可靠的。
Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation - which we call Planckian Jitter - that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.