论文标题
三个维度的弹性障碍物散射问题的光谱边界积分方法
A spectral boundary integral method for the elastic obstacle scattering problem in three dimensions
论文作者
论文摘要
在本文中,我们考虑了嵌入在三个维度的均质和各向同性弹性介质中的刚性障碍物对平面波的散射。基于Helmholtz的分解,将弹性散射问题简化为Helmholtz和Maxwell方程的耦合边界值问题。制定了一个新型边界积分方程的系统,并为耦合边界值问题开发了光谱边界积分方法。提出了数值实验,以证明该方法的出色性能。
In this paper, we consider the scattering of a plane wave by a rigid obstacle embedded in a homogeneous and isotropic elastic medium in three dimensions. Based on the Helmholtz decomposition, the elastic scattering problem is reduced to a coupled boundary value problem for the Helmholtz and Maxwell equations. A novel system of boundary integral equations is formulated and a spectral boundary integral method is developed for the coupled boundary value problem. Numerical experiments are presented to demonstrate the superior performance of the proposed method.