论文标题

比例危害模型中订单统计的依赖性比较

Dependence comparisons of order statistics in the proportional hazards model

论文作者

Kochar, Subhash

论文摘要

令$ x_1,\ ldots,x_n $是相互独立的指数随机变量,具有明显危险率$λ_1,\ ldots,λ_n> 0 $,让$ y_1,\ ldots,y_n $是从危险率$ \ bar \ bar \ lmd = sum______的$ y_n $的随机样本,是一个随机样本。另外,让$ x_ {1:n} <\ cdots <x_ {n:n} $和$ y_ {1:n} <\ cdots <y_ {n:n} $是他们的关联顺序统计信息。结果表明,对于$ 1 \ le i <j \ le n $,广义间距$ x_ {j:\,n} - x_ {i:\,n} $比$ y_ {j:\,n} - y_ y__ {y y_ {i:\,n} $比$ y_ {j:\,n} -n} $。该结果用于解决一个长期的开放问题,以$ 2 \ le i \ le n $,$ x_ {i:\,n} $的依赖性在$ x_ {1:\,n} $上小于$ y_ {i:\,n} $ of $ y_ {i:\,n} $ on $ y_ {1 \,:此依赖性结果也扩展到PHR模型。这扩展了{\ em genest,kochar和xu}的早期工作[J. \多变量肛门。

Let $X_1, \ldots , X_n$ be mutually independent exponential random variables with distinct hazard rates $λ_1, \ldots , λ_n > 0$ and let $Y_1, \ldots, Y_n$ be a random sample from the exponential distribution with hazard rate $\bar \lmd = \sum_{i=1}^n \lmd_i/n$. Also let $X_{1:n} < \cdots < X_{n:n}$ and $Y_{1:n} < \cdots < Y_{n:n}$ be their associated order statistics. It is shown that for $1\le i <j \le n$, the generalized spacing $X_{j:\, n} - X_{i:\, n}$ is more dispersed than $Y_{j:\,n} - Y_{i:\, n}$ according to dispersive ordering. This result is used to solve a long standing open problem that for $2\le i \le n$ the dependence of $ X_{i:\, n}$ on $X_{1:\, n}$ is less than that of $Y_{i: \, n}$ on $Y_{1\, :n}$, in the sense of the more stochastically increasing. This dependence result is also extended to the PHR model. This extends the earlier work of {\em Genest, Kochar and Xu}[ J.\ Multivariate Anal.\ {\bf 100} (2009) \ 1587-1592] who proved this result for $i =n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源