论文标题
CengCN:具有顶点不平衡图表的集中卷积网络
CenGCN: Centralized Convolutional Networks with Vertex Imbalance for Scale-Free Graphs
论文作者
论文摘要
图形卷积网络(GCN)在各种领域都取得了令人印象深刻的表现,引起了广泛关注。 GCN的核心步骤是信息通信框架,该框架认为从邻居到中心顶点的所有信息都同样重要。然而,对于无标度网络而言,如此重要的重要性不足,在该网络中,由于顶点不平衡,枢纽的顶点传播了更多的主导信息。在本文中,我们提出了一个名为CengCN的基于中心性的新型框架,以解决信息的不平等。该框架首先通过用轮毂顶点标记传播,量化了集线器顶点与其邻居之间的相似性。基于此相似性和中心性指数,该框架通过增加或减小连接轮毂顶点的边缘的权重并在顶点添加自相关来改变图形。在GCN的每个非输出层中,该框架使用集线器注意机制将新的权重分配给基于HUB顶点的常见信息,以将新的权重分配给连接的非集线器顶点。我们分别基于学位中心和特征向量的中心性,提出了两个变体cengcn \ _d和cengcn \ _e。我们还进行了全面的实验,包括顶点分类,链接预测,顶点聚类和网络可视化。结果表明,这两个变体的表现明显胜过最先进的基线。
Graph Convolutional Networks (GCNs) have achieved impressive performance in a wide variety of areas, attracting considerable attention. The core step of GCNs is the information-passing framework that considers all information from neighbors to the central vertex to be equally important. Such equal importance, however, is inadequate for scale-free networks, where hub vertices propagate more dominant information due to vertex imbalance. In this paper, we propose a novel centrality-based framework named CenGCN to address the inequality of information. This framework first quantifies the similarity between hub vertices and their neighbors by label propagation with hub vertices. Based on this similarity and centrality indices, the framework transforms the graph by increasing or decreasing the weights of edges connecting hub vertices and adding self-connections to vertices. In each non-output layer of the GCN, this framework uses a hub attention mechanism to assign new weights to connected non-hub vertices based on their common information with hub vertices. We present two variants CenGCN\_D and CenGCN\_E, based on degree centrality and eigenvector centrality, respectively. We also conduct comprehensive experiments, including vertex classification, link prediction, vertex clustering, and network visualization. The results demonstrate that the two variants significantly outperform state-of-the-art baselines.