论文标题
RNGDET:在航空图像中通过变压器进行道路网络图检测
RNGDet: Road Network Graph Detection by Transformer in Aerial Images
论文作者
论文摘要
道路网络图为自动驾驶应用程序提供了关键信息,例如可用于运动计划算法的可驱动区域。为了找到道路网络图,手动注释通常效率低下且劳动力密集。自动检测道路网络图可以减轻此问题,但现有作品仍然存在一些局限性。例如,基于细分的方法无法确保令人满意的拓扑正确性,并且基于图的方法无法提供足够精确的检测结果。为了解决这些问题的解决方案,我们在本文中提出了一种基于变压器和模仿学习的新方法。鉴于当今世界各地可以轻松访问高分辨率航空图像,我们在方法中使用航空图像。作为输入的空中图像,我们的方法迭代生成道路网络图逐词顶点。我们的方法可以处理复杂的交叉点,以及各种事件的道路细分。我们在公开可用的数据集上评估我们的方法。通过比较实验证明了我们方法的优势。我们的作品附有一个演示视频,可在\ url {https://tonyxuqaq.github.io/projects/rngdet/}中获得。
Road network graphs provide critical information for autonomous-vehicle applications, such as drivable areas that can be used for motion planning algorithms. To find road network graphs, manually annotation is usually inefficient and labor-intensive. Automatically detecting road network graphs could alleviate this issue, but existing works still have some limitations. For example, segmentation-based approaches could not ensure satisfactory topology correctness, and graph-based approaches could not present precise enough detection results. To provide a solution to these problems, we propose a novel approach based on transformer and imitation learning in this paper. In view of that high-resolution aerial images could be easily accessed all over the world nowadays, we make use of aerial images in our approach. Taken as input an aerial image, our approach iteratively generates road network graphs vertex-by-vertex. Our approach can handle complicated intersection points with various numbers of incident road segments. We evaluate our approach on a publicly available dataset. The superiority of our approach is demonstrated through the comparative experiments. Our work is accompanied with a demonstration video which is available at \url{https://tonyxuqaq.github.io/projects/RNGDet/}.