论文标题

用于计算动态系统适应指标的预测亚级别方法

A Projected Subgradient Method for the Computation of Adapted Metrics for Dynamical Systems

论文作者

Louzeiro, Maurício, Kawan, Christoph, Hafstein, Sigurdur, Giesl, Peter, Yuan, Jinyun

论文摘要

在本文中,我们扩展了一种最近建立的亚级别方法,用于计算Riemannian指标,以优化与动态系统相关的某些奇异值函数。此扩展是三倍。首先,我们引入了一种投影的亚级别方法,该方法导致了Riemannian指标,其参数仅限于紧凑型凸集,因此我们可以证明存在最小化器;其次,我们允许不精确的亚级别并研究误差对计算指标的影响。第三,我们分析了三种不同选择的阶梯尺寸选择:恒定,外源性和polyak。新方法通过应用于Hénon地图的维度和熵估计来说明。

In this paper, we extend a recently established subgradient method for the computation of Riemannian metrics that optimizes certain singular value functions associated with dynamical systems. This extension is threefold. First, we introduce a projected subgradient method which results in Riemannian metrics whose parameters are confined to a compact convex set and we can thus prove that a minimizer exists; second, we allow inexact subgradients and study the effect of the errors on the computed metrics; and third, we analyze the subgradient algorithm for three different choices of step sizes: constant, exogenous and Polyak. The new methods are illustrated by application to dimension and entropy estimation of the Hénon map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源